

Appendix Slides

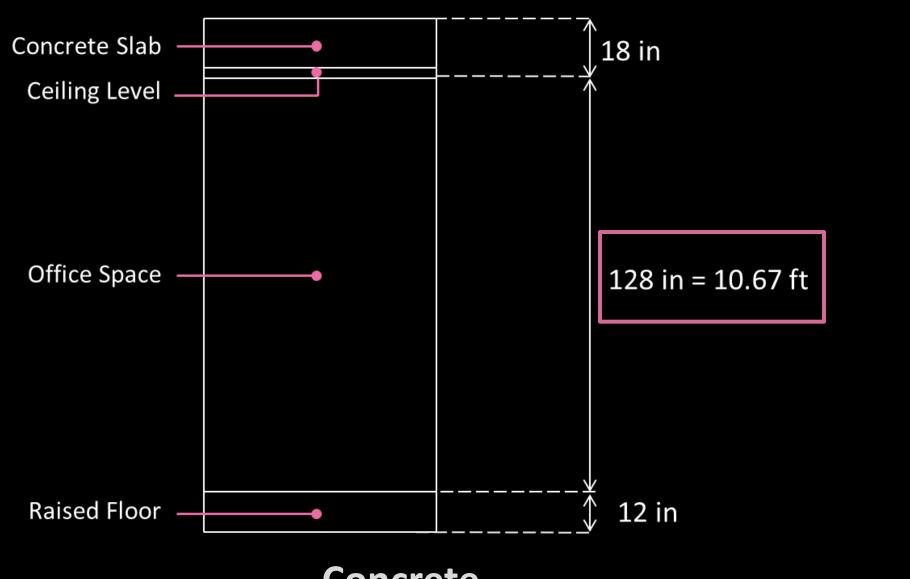
Architecture Breadth Dual Systems Check

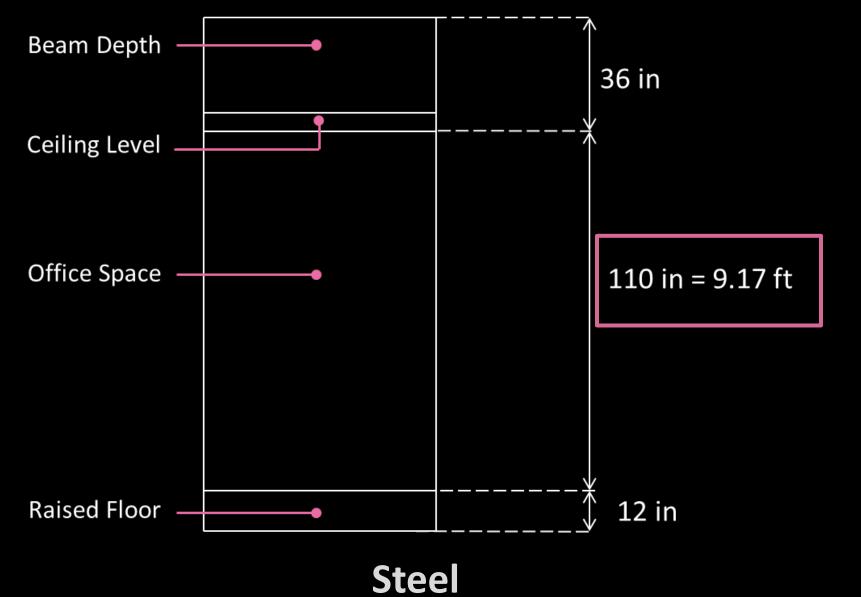
Shear Wall Modeling Lateral System
Verification

Model Verification

Vibrations Analysis

Architecture Breadth


Floor-to-Ceiling Height


- Building height limited to 198'-8" by FAA
- Steel creates a deeper structural system than concrete
- Loss of floor-to-ceiling space

Appendix List

Floor-to-Ceiling Height

1'-6" Decrease in floor-to-ceiling height

Concrete

Fire Protection Breadth

Required Fire-Resistance Ratings						
Element	Construction Type	Required Rating (hours)				
Primary Floor Framing Members	Type 1B	2				
Secondary Floor Framing Members	Type 1B	2				
Structural Columns	Type 1A	3				

Appendix List

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

BUILDING ELEMENT		TYPE II TYPE II		TYPE III		TYPE IV	TYP	PE V	
		В	A⁴	В	A⁴	В	HT	Ad	В
Primary structural frameg (see Section 202)	3°	2ª	1	0	1	0	TH	1	0
Bearing walls Exterior ^{f, g} Interior	3 3ª	2 2ª	1 1	0	2	2 0	2 1/HT	1	0 0
Nonbearing walls and partitions Exterior			See Table 602						
Nonbearing walls and partitions Interior ^e	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and associated secondary members (see Section 202)	2	2	1	0	1	0	НТ	1	0
Roof construction and associated secondary members (see Section 202)	1 ¹ / ₂ ^b	1 ^{b,c}	1 ^{b,c}	Oc.	1 ^{b.c}	0	нт	1 ^{b,c}	0

For SI: 1 foot = 304.8 mm.

- a. Roof supports: Fire-resistance ratings of primary structural frame and bearing walls are permitted to be reduced by 1 hour where supporting a roof only.
- b. Except in Group F-1, H, M and S-1 occupancies, fire protection of structural members shall not be required, including protection of roof framing and decking where every part of the roof construction is 20 feet or more above any floor immediately below. Fire-retardant-treated wood members shall be allowed to be used for such unprotected members.
- . In all occupancies, heavy timber shall be allowed where a 1-hour or less fire-resistance rating is required.
- d. An approved automatic sprinkler system in accordance with Section 903.3.1.1 shall be allowed to be substituted for 1-hour fire-resistance-rated construction, provided such system is not otherwise required by other provisions of the code or used for an allowable area increase in accordance with Section 506.3 or an allowable height increase in accordance with Section 504.2. The 1-hour substitution for the fire resistance of exterior walls shall not be permitted.
- e. Not less than the fire-resistance rating required by other sections of this code.
- f. Not less than the fire-resistance rating based on fire separation distance (see Table 602).
- g. Not less than the fire-resistance rating as referenced in Section 704.10

Design No. N708 February 08, 2014 Restrained Beam Ratings — 1, 2, 3 and 4 Hr. Unrestrained Beam Ratings — 1, 1-1/2, 2, 3 and 4 Hr. Load Restricted for Canadian Applications — See Guide BXUV7 2-1/2" 1-1/2 TO 3 6

1.5" of SFRM

Appendix List

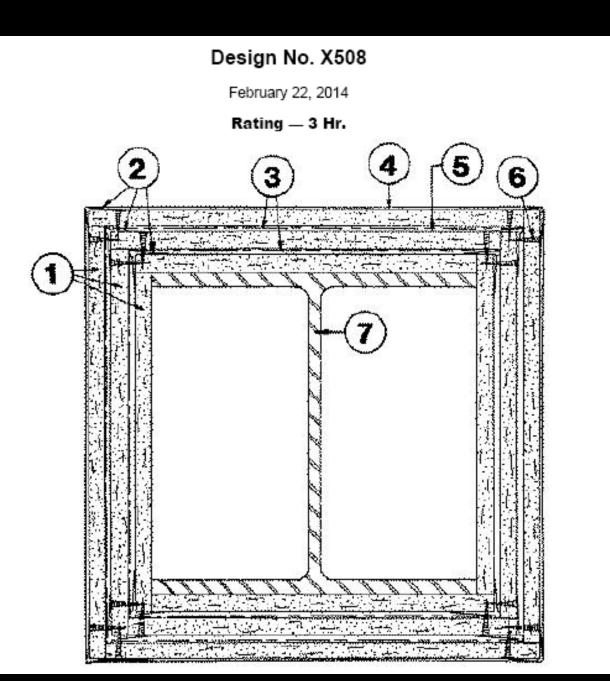
Fire Protection Breadth

$$h_2 = h_1 [(W_1/D_1) + 0.60] / [(W_2/D_2) + 0.60]$$
 (Equation 7-17)

where:

= Thickness of sprayed fire-resistant material in inches.

= Weight of the structural steel beam or girder in pounds per linear foot.


= Heated perimeter of the structural steel beam in inches.

Subscript 1 refers to the beam and fire-resistant material thickness in the *approved* assembly.

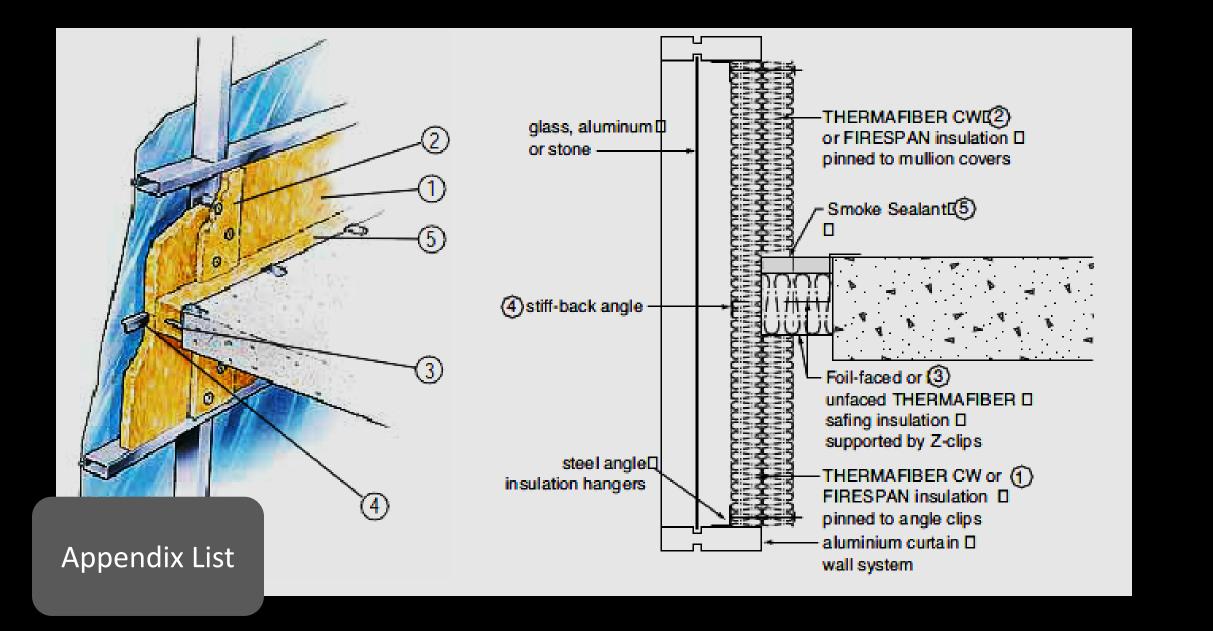
Required Spray Fireproofing Thickness							
722.5.2.1 Requirements							
Min W/D for Substitute	0.37	OK					
Beam:							
Min Thickness of	0.375	in					
Protection:							
Unrestrained/restrained?	Unrestrained (to be co						
Min Fire Rating:	1 hour						
Required Fire Rating:	2 hour						
Minimum Beam Size:	W12x14						
Heated Perimeter:	0.405						
Assembly Tested	Min Beam Size	h1	W1/D1	W2/D2	h2		
N708	W8x28	1.00	0.819	0.405	1.412		

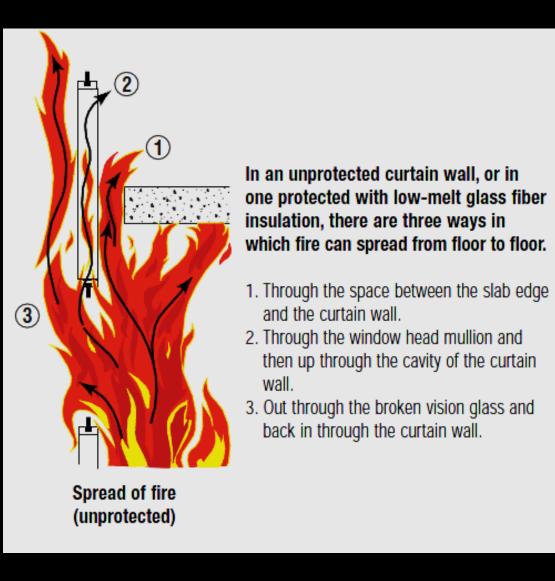
Fire Protection Breadth

- 1. The outer layer must be 5/8 inches thick. The inner layers will be 5/8 inch thick wall board as well. The wallboard is installed without any horizontal joints. 1 inch long self-drilling screws shall be spaced as required for the installation of the first layer of wall board.
- 2. 28 MSG galvanized metal corner bead
- 3. 18 SWG annealed wire, space 6 inches from each end and at 1'-9" intervals
- 4. May be finished with 3/32" thick gypsum veneer plaster. Joints reinforced.
- 5. Laminated with joint cement.
- 6. 1 inch long self-drilling screws spaced at 12" center to center
- 7. Minimum column size of W10X49. 9/16 flange thickness and 5/16 inch web thickness. 14.4 square inch area.

- 4.25 LW topping provided
- Adequate for 2 hour fire resistance between levels

Fire Protection Breadth


TABLE 707.3.10 FIRE-RESISTANCE RATING REQUIREMENTS FOR FIRE BARRIER ASSEMBLIES OR HORIZONTAL ASSEMBLIES BETWEEN FIRE AREAS


OCCUPANCY GROUP	FIRE-RESISTANCE RATING (hours)
H-1, H-2	4
F-1, H-3, S-1	3
A, B, E, F-2, H-4, H-5, I, M, R, S-2	2
U	1

estrained ssembly Rating	Type of Protection	Concrete Thickness & Type (1)
1 (3(11))	110000011	2" NW&LW
	Sprayed Fiber	2 1/2" NW&LW
		2 1/2 ' LW
O Lle		2 1/2" NW
2 Hr.		3 1/4' LW
ontinued)	Unprotected Deck	3 1/4 " LW
		4 ∜2" NW

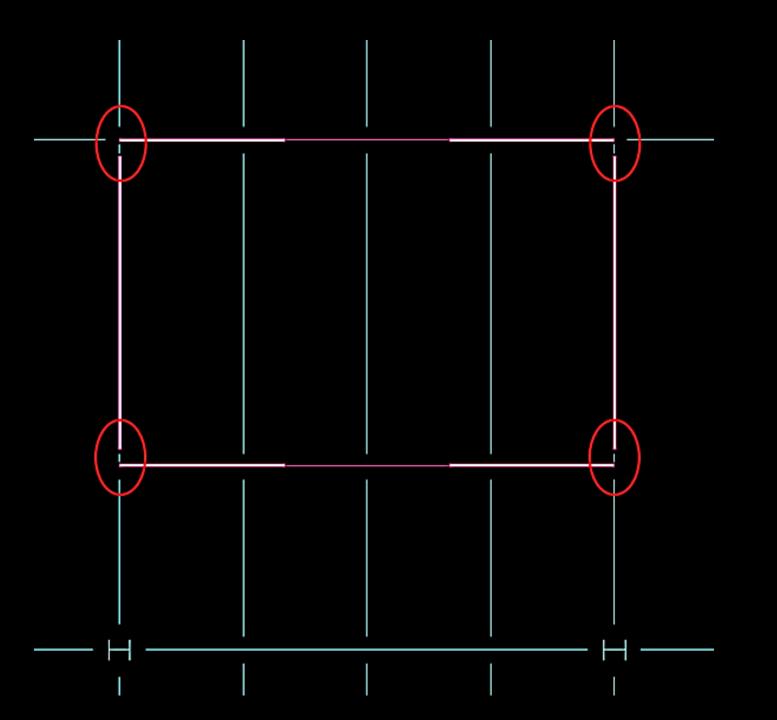
Appendix List

Fire Protection Breadth

THERMAFIBER Life-Safety Fire Containment Products compartmentalize fire, preventing it from spreading from the floor of origin up to the floor above by:

- Filling the slab-edge/curtain wall gap with
 Thermafiber Safing Insulation
- 2. Protecting the vertical mullions
- Providing a vertical barrier to fire using
 Thermafiber Curtain Wall or FireSpan
 Insulation

Shear Wall Modeling

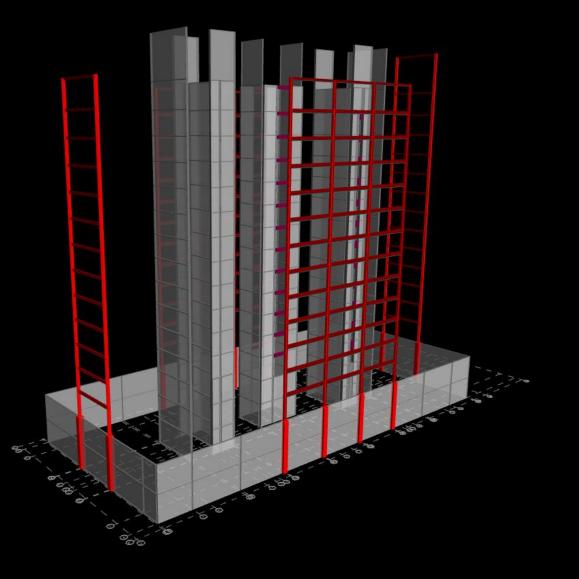


Appendix List

Shear Wall Modeling Method

- Shell elements connected at nodes caused an irregular distribution of torsional forces within the wall core
 - Bentley suggested disconnecting the shear walls and adding gravity framing elements to eliminate a "framing tables" error
 - Does not count on flanged walls to take out of plane loads or to help in flexure
 - Eliminated odd torsionally anomaly

Model Verification


Model Verification

Model Verification Summary								
	% Error X-Direction % Error Y-Direction							
Center of Mass	0.284% 1.265%							
Center of Rigidity	2.813% 1.681%							
Floor Mass	11	%						
Seismic Loads	15	%						
Wind Loads	0.25% 3.31%							
2D Analysis	10 - 20 %							

Appendix List

Dual System Check

Dual System Check

Appendix	List

	Dual System Check								
	X-Direction Direct Shear								
ltem	Shear (kip)	Shear (kip) % of Total Shear Dual System							
Frame 1	595.21	18.27%	No						
Frame 2	643.37	19.74%	No						
Shear Walls	2020.00 61.99% -								
Total Shear	r 3258.58 kip								
	Y-Directi	on Direct Shear							
ltem	Shear (kip)	% of Total Shear	Dual System?						
Frame 3	35.61	1.18%	No						
Frame 4	32.41	1.08%	No						
Shear Walls	2941.00	97.74%	-						
Total Shear	3009.02 kip								

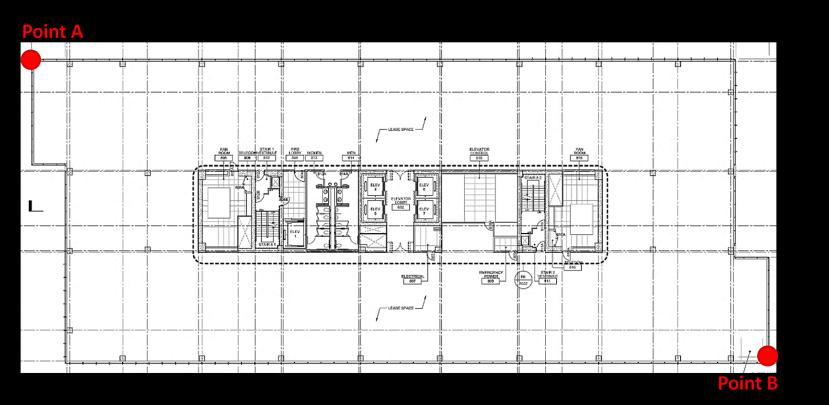
Lateral System Verification

- Drifts for wind and seismic were verified to meet code and industry standard requirements (Cd=5, R=6)
- Torsional analysis was performed at each story under the different seismic load cases and found to no longer have an irregularity
- Stability coefficients were verified
- Overturning moment was checked under the controlling load case

Appendix List

Lateral System Verification

Wind Displacement Determination									
Load Case	X - Deflection (in)	Y - Deflection (in)	L/400 (in)	Pass/Fail?					
Wind_ASCE710_1_X	1.91	0.00	5.940	Pass					
Wind_ASCE710_1_Y	0.00	2.11	5.940	Pass					
Wind_ASCE710_2_X+E	1.43	-0.01	5.940	Pass					
Wind_ASCE710_2_X-E	1.43	0.01	5.940	Pass					
Wind_ASCE710_2_Y+E	0.01	1.68	5.940	Pass					
Wind_ASCE710_2_Y-E	-0.01	1.49	5.940	Pass					
Wind_ASCE710_3_X+Y	1.43	1.58	5.940	Pass					
Wind_ASCE710_3_X-Y	1.43	-1.58	5.940	Pass					
Wind_ASCE710_4_X+Y_CW	1.07	1.11	5.940	Pass					
Wind_ASCE710_4_X+Y_CCW	1.08	1.27	5.940	Pass					
Wind_ASCE710_4_X-Y_CW	1.07	-1.26	5.940	Pass					
Wind_ASCE710_4_X-Y_CCW	1.08	-1.10	5.940	Pass					


- Drifts for wind and seismic were verified to meet code and industry standard requirements (Cd=5, R=6)
- Torsional analysis was performed at each story under the different seismic load cases and found to no longer have an irregularity
- Stability coefficients were verified
- Overturning moment was checked under the controlling load case

Appendix List

	Seismic Story Drift Check						
Level	Level Height (ft)	C _d *	ʻδ _x	Allowable Drift (in)	Pass/Fail?		
Level	Level Height (It)	X-Direction	Y-Direction	Allowable Drift (III)	X-Direction	Y-Direction	
PH Roof	24.33	5.15	2.04	5.839	Pass	Pass	
PH	14.5	3.08	1.22	3.480	Pass	Pass	
13	14	2.83	1.02	3.360	Pass	Pass	
12	14	2.87	1.01	3.360	Pass	Pass	
11	14	2.89	1.00	3.360	Pass	Pass	
10	14	2.89	0.97	3.360	Pass	Pass	
9	14	2.85	0.93	3.360	Pass	Pass	
8	14	2.76	0.88	3.360	Pass	Pass	
7	14	2.62	0.82	3.360	Pass	Pass	
6	14	2.41	0.74	3.360	Pass	Pass	
5	14	2.13	0.64	3.360	Pass	Pass	
4	14	1.76	0.53	3.360	Pass	Pass	
3	14	1.29	0.40	3.360	Pass	Pass	
2	15	0.78	0.27	3.600	Pass	Pass	
Overall D	isplacement=	36.32	12.46				

- Drifts for wind and seismic were verified to meet code and industry standard requirements (Cd=5, R=6)
- Torsional analysis was performed at each story under the different seismic load cases and found to no longer have an irregularity
- Stability coefficients were verified
- Overturning moment was checked under the controlling load case

Lateral System Verification

Check for Torsional Irregularities X Direction								
Level	δ_{A}	$\delta_{\scriptscriptstyle B}$	δ_{avg}	δmax	Does a torsional			
	/\	av _g			irregularity exist?			
'H	0.6268	0.6269	0.63	0.6269	No			
evel 13	0.5762	0.5764	0.58	0.5764	No			
evel 12	0.5846	0.5847	0.58	0.5847	No			
evel 11	0.5887	0.5888	0.59	0.5888	No			
evel 10	0.5877	0.5878	0.59	0.5878	No			
evel 9	0.5788	0.5789	0.58	0.5789	No			
evel 8	0.5614	0.5615	0.56	0.5615	No			
evel 7	0.5320	0.5321	0.53	0.5321	No			
evel 6	0.4901	0.4902	0.49	0.4902	No			
evel 5	0.4330	0.4331	0.43	0.4331	No			
evel 4	0.3582	0.3582	0.36	0.3582	No			
evel 3	0.2116	0.2637	0.24	0.2637	No			

Appendix List

- Drifts for wind and seismic were verified to meet code and industry standard requirements (Cd=5, R=6)
- Torsional analysis was performed at each story under the different seismic load cases and found to no longer have an irregularity
- Stability coefficients were verified
- Overturning moment was checked under the controlling load case

Lateral System Verification

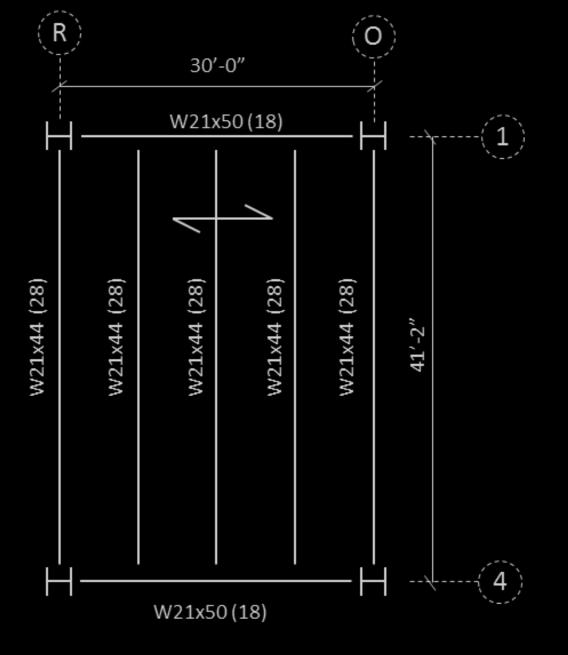
Building Resisting Moment						
Worst Case Resistance - Y Direction						
Total Building Weight = 82296 kip						
Moment Arm =	57.5	ft				
Factory of Safety=	0.67					
M _{resisting} =	3170446	ft-k				

Worst Case Moment for Building Overturning		
Seismic Y Direction - Load Case: Y + YET		
381110	ft-k	

Check Overturning			
Worst Case Resistance - Y Direction			
Overturning Moment =	381,110	ft-kip	
Resisting Moment =	3,170,446	ft-kip	
Okay?	Pass		

Vibrations Analysis

- LL = 11 PSF
- Superimposed DL = 40 PSF
- Concrete weight = 50 pcf (Lightweight)
- Floor thickness = 5.75"
- 1.5VLR20 with 4.25" LW topping
- $P_0 = 65lb$
- $\beta = 0.03$
- $a_0/g = 0.5\%$


Vibrations Analysis

- **Beam Properties:**
 - $W_j = 153 \text{ kip}$
 - $f_i = 4.39 \text{ Hz}$
 - $W_g = 205.3 \text{ kip}$
 - $f_{g} = 4.86 \text{ Hz}$
- Combined Mode Properties:
 - $f_{n} = 3.36 \text{ Hz}$
 - $W_{total} = 174.5 \text{ kip}$

•
$$a_p/g = 0.38\%$$

